R Programming: Advanced Analytics In R For Data Science
Ditulis pada: February 02, 2024
Coupon Details
R Programming: Advanced Analytics In R For Data Science, Take Your R & R Studio Skills To The Next Level. Data Analytics, Data Science, Statistical Analysis in Business, GGPlot2
Created by Kirill Eremenko, SuperDataScience Team
Preview This Course - GET COUPON CODE
What Will I Learn?
- Perform Data Preparation in R
- Identify missing records in dataframes
- Locate missing data in your dataframes
- Apply the Median Imputation method to replace missing records
- Apply the Factual Analysis method to replace missing records
- Understand how to use the which() function
- Know how to reset the dataframe index
- Work with the gsub() and sub() functions for replacing strings
- Explain why NA is a third type of logical constant
- Deal with date-times in R
- Convert date-times into POSIXct time format
- Create, use, append, modify, rename, access and subset Lists in R
- Understand when to use [] and when to use [[]] or the $ sign when working with Lists
- Create a timeseries plot in R
- Understand how the Apply family of functions works
- Recreate an apply statement with a for() loop
- Use apply() when working with matrices
- Use lapply() and sapply() when working with lists and vectors
- Add your own functions into apply statements
- Nest apply(), lapply() and sapply() functions within each other
- Use the which.max() and which.min() functions